- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Guo, Xuefeng (2)
-
Jia, Chuancheng (2)
-
Cui, Longji (1)
-
Duan, Ping (1)
-
Guo, Yilin (1)
-
Houk, K. N. (1)
-
Li, Xingxing (1)
-
Li, Zhizhou (1)
-
Lin, Jinglong (1)
-
Lu, Chenxi (1)
-
Mo, Fanyang (1)
-
Shen, Shaocheng (1)
-
Shiri, Mehrdad (1)
-
Song, Ziqi (1)
-
Wang, Kun (1)
-
Yang, Chen (1)
-
Yang, Jinlong (1)
-
Yelishala, Sai Chandra (1)
-
Zhang, Haixin (1)
-
Zhang, Jianning (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Molecular-scale junctions (MSJs) have been considered the ideal testbed for probing physical and chemical processes at the molecular scale. Due to nanometric confinement, charge and energy transport in MSJs are governed by quantum mechanically dictated energy profiles, which can be tuned chemically or physically with atomic precision, offering rich possibilities beyond conventional semiconductor devices. While charge transport in MSJs has been extensively studied over the past two decades, understanding energy conversion and transport in MSJs has only become experimentally attainable in recent years. As demonstrated recently, by tuning the quantum interplay between the electrodes, the molecular core, and the contact interfaces, energy processes can be manipulated to achieve desired functionalities, opening new avenues for molecular electronics, energy harvesting, and sensing applications. This Review provides a comprehensive overview and critical analysis of various forms of energy conversion and transport processes in MSJs and their associated applications. We elaborate on energy-related processes mediated by the interaction between the core molecular structure in MSJs and different external stimuli, such as light, heat, electric field, magnetic field, force, and other environmental cues. Key topics covered include photovoltaics, electroluminescence, thermoelectricity, heat conduction, catalysis, spin-mediated phenomena, and vibrational effects. The review concludes with a discussion of existing challenges and future opportunities, aiming to facilitate in-depth future investigation of promising experimental platforms, molecular design principles, control strategies, and new application scenarios.more » « less
-
Zhang, Lei; Yang, Chen; Lu, Chenxi; Li, Xingxing; Guo, Yilin; Zhang, Jianning; Lin, Jinglong; Li, Zhizhou; Jia, Chuancheng; Yang, Jinlong; et al (, Nature Communications)Abstract Precise tuning of chemical reactions with predictable and controllable manners, an ultimate goal chemists desire to achieve, is valuable in the scientific community. This tunability is necessary to understand and regulate chemical transformations at both macroscopic and single-molecule levels to meet demands in potential application scenarios. Herein, we realise accurate tuning of a single-molecule Mizoroki-Heck reaction via applying gate voltages as well as complete deciphering of its detailed intrinsic mechanism by employing an in-situ electrical single-molecule detection, which possesses the capability of single-event tracking. The Mizoroki-Heck reaction can be regulated in different dimensions with a constant catalyst molecule, including the molecular orbital gating of Pd(0) catalyst, the on/off switching of the Mizoroki-Heck reaction, the promotion of its turnover frequency, and the regulation of each elementary reaction within the Mizoroki-Heck catalytic cycle. These results extend the tuning scope of chemical reactions from the macroscopic view to the single-molecule approach, inspiring new insights into designing different strategies or devices to unveil reaction mechanisms and discover novel phenomena.more » « less
An official website of the United States government
